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Abstract

The goal of this work is to extend finite volume WENO and central WENO schemes to the hyperbolic balance laws

with geometrical source term and spatially variable flux function. In particular, we apply proposed schemes to the

shallow water and the open-channel flow equations where the source term depends on the channel geometry. For ob-

taining stable numerical schemes that are free of spurious oscillations, it becomes crucial to use the decomposed source

term evaluation, which maintains the balancing between the flux gradient and the source term. In addition, the open-

channel flow equations contain spatially variable flux function. The appropriate definitions of the terms that arise in the

source term decomposition, in combination with the Roe approximate Riemann solver that includes the spatial deriv-

ative of the flux function, lead to the finite volume WENO scheme that satisfies the exact conservation property – the

property of preserving the quiescent flow exactly. When the central WENO schemes are applied, additional reformu-

lations are introduced for the transition from the staggered values to the nonstaggered ones and vice versa by using the

WENO reconstruction procedure. The proposed central WENO schemes also preserve the quiescent flow, but only in

prismatic channels. In various test problems the obtained balanced schemes show improvements in comparison with the

standard versions of the proposed type schemes, as well as with some other first- and second-order numerical schemes.
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1. Introduction

We consider the one-dimensional hyperbolic balance law system

otuþ oxfðu; xÞ ¼ gðu; xÞ: ð1Þ
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Here, u is the vector variable, fðu; xÞ is the flux, and gðu; xÞ is the source term. The goal of this work is to

extend finite volume WENO and central WENO schemes to the hyperbolic balance laws of type (1), where

fðu; xÞ is a spatially variable flux function and gðu; xÞ is a geometrical source term. In particular, we apply
proposed algorithms to the shallow water equations and the open-channel flow equations. In these balance

law systems the source term depends on the geometry of the channel, hence it is of the geometrical type. In

addition, in the open-channel flow equations, the flux is spatially dependent.

In the last few years various papers were published that were concentrated on the numerical ap-

proximations for balance laws. The most important property in connection with the numerical schemes

that should be able to treat correctly the shallow water equations was given by Berm�udez and V�azquez
[2]. They introduced the notion of the exact conservation property for the numerical schemes that pre-

serve the quiescent flow exactly. The first-order finite volume scheme they developed for the shallow water
equations used a decomposed approximation of the source term. Based on that approach Hubbard and

Garc�ıa-Navarro [9] extended the second-order finite volume scheme, flux-limited and MUSCL scheme, to

the shallow water equations. Other first- and second-order schemes that were applied to the shallow water

equations and that used the idea of balancing between the source term and the flux gradient were: wave

propagation algorithm by LeVeque [18], gas-kinetic scheme by Xu [27], kinetic-scheme by Perthame and

Simeoni, central-upwind schemes given by Kurganov and Levy [16], a family of numerical flux-splitted

solvers proposed in [5,6], etc. The surface gradient method in combination with the second-order finite

volume scheme that also lead to the scheme that satisfies the exact conservation property was proposed in
[33]. By combining the well-balanced schemes that were initially introduced by Greenberg and LeRoux in

the scalar case [14] and later by Gosse for the balance laws systems [12], with some approximate Riemann

solvers, Gallou€et et al. [10] developed the numerical schemes for computation of the shallow water

equations with topography, which can preserve the steady-state solutions. First higher-order schemes that

respect balancing between the source term and the flux gradient, which is crucial for preserving some

steady-state solutions were developed in [29]. In that work we extended the finite difference ENO and

WENO schemes to the shallow water equations. Since in the finite difference version of the ENO and

WENO schemes the numerical flux is obtained by the WENO reconstruction, which is applied to the flux
function directly, to achieve balancing the source term approximation must have the similar form.

Therefore, the decomposed approximation of the source term was extended with the higher-order terms

necessary for obtaining balancing. Also, some additional reformulations of the WENO reconstruction

procedure that lead to the balanced ENO and WENO schemes were introduced. We also extended the

same schemes in [7] for the sediment transport equations such that the exact conservation property is

achieved. The difference in sediment transport equations when compared to the shallow water equations

lies in the fact that a nonconservative product arises in that balance law instead of the geometrical source

term.
All the mentioned papers studied the way to treat the terms arising from the bed level changes.

However, when the open-channel flow equations are considered, a second part of the source term that

includes the changes in the cross-section of the channel arises. The correct numerical approximation of

that part of the source term is crucial for obtaining the balanced numerical scheme. Moreover, the

spatially varied flux is present, hence the spatial part of the flux must be incorporated into its numerical

approximation. In [30], we developed upwind, first- and second-order finite volume schemes with the exact

conservation property for the open-channel flow equations with the arbitrary cross-section channel.

Similar results, based on different formulations of the flux and the source term, were given by Garc�ıa-
Navarro and V�azquez-Cendon [11]. Hubbard and Garc�ıa-Navarro [9] also considered the open-channel

flow equations, but their discussion was reduced only to the channels with the rectangular cross-sections.

The continuation of the work presented in [30] was connected with the extension of the finite difference

ENO and WENO schemes to the balanced laws with spatially varying flux [31], where these schemes were

applied to the open-channel flow equations and to the one-dimensional elastic wave equations. For both
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balance laws, the exact conservation property for some steady-state solution was satisfied. In [1], the

extension of the wave propagation algorithm to the hyperbolic conservation and balance laws with

spatially varying flux functions was considered.
In this work we consider the finite volume WENO schemes that were originally introduced by Liu et al.

[22]. The crucial difference from the finite difference WENO schemes lies in the fact that the WENO re-

construction procedure is applied to the solution and not to the flux function values (see [8,24]). As a

consequence of that, the finite volume WENO schemes can be applied to the nonuniform mesh. Moreover,

in the finite difference WENO schemes, for obtaining balancing, the WENO reconstruction must be applied

to the source term values, while in the finite volume case the source term should be appropriately discretized

at the states that are obtained with the WENO reconstruction. The balancing procedure is actually con-

nected with the numerical flux function that is used on the obtained reconstructed values. We consider here
the case when the Roe approximate Riemann solver is used. In the extension of the finite volume WENO

schemes to the balance laws, we apply two main ideas. The first one is connected with the source term

approximation that is done in the similar way as it was proposed by Hubbard and Garc�ıa-Navarro [9] for

the MUSCL schemes. The second one is to include the spatial derivative of the flux into its numerical

approximation. A similar numerical treatment we proposed in [30] for the first- and second-order upwind

schemes.

The central WENO schemes for the hyperbolic conservation laws were developed by Levy et al. [20].

Higher-order central WENO schemes were considered in [23]. Their construction was based on using the
staggered grid. In [15], the first- and the second-order nonstaggered central schemes were developed. By

applying the similar approach to the central WENO schemes, we obtain the nonstaggered central WENO

schemes, which we consider here. The goal is to extend mentioned schemes to the shallow water and to the

open-channel flow equations such that the quiescent flow is preserved.

The organization of the paper is as follows. In Section 2, we present the general formulation of the new

finite volume WENO schemes. The numerical approximations for the spatially varied flux and for the

source term are defined such that the balancing between the flux gradient and the source term can be

obtained. Of course, the exact definitions of those terms depend on the particular balance law system and
we give them in the Section 4 for the open-channel flow equations and for the shallow water equations as a

special case of the open-channel flow equations. We prove that the proposed scheme satisfies the exact

conservation property. In Section 3, the general formulation of the extended nonstaggered central WENO

scheme for balance laws is presented. We again determine the undefined terms in Section 4. Moreover, we

introduce some reformulations of the algorithm of the transition from the staggered values to the non-

staggered ones and then back. These reformulations are based on the quiescent flow steady state we want to

be preserved. What we must emphasize is the fact that unlike for the finite volume WENO, the balancing

for the central WENO scheme could not be obtained for arbitrary channels, but only for rectangular cross-
section channels with the algorithm we propose in this paper. Namely, in the general case it is not clear how

the transformations between the staggered and the nonstaggered mesh have to be made, such that the

steady quiescent flow state is preserved. Finally, with the numerical results in Section 5, we illustrate

the improvement of the proposed approach for both considered schemes. First, we present the tests for the

shallow-water equations and then the more general open-channel flow test cases. The accuracy test results

show that with the proposed reformulations the spatial order of accuracy of our schemes is not

deteriorated.
2. Finite volume WENO schemes for balance laws

In order to solve the balance law system (1) with the finite volume WENO type scheme, we rewrite it first

in the form
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otu ¼ �oxfðu; xÞ þ gðu; xÞ: ð2Þ

Let us consider the semi-discrete formulation of the scheme. For that purpose we introduce a spatial
discretization of the considered domain with cells Ii ¼ ½xi�1

2
; xiþ1

2
�, i ¼ 1; . . . ;N . We denote the ith cell size

with Dxi and the cell center xi ¼ 1
2
ðxi�1

2
þ xiþ1

2
Þ.

Let uiðtÞ denote the cell average of uð�; tÞ over the cell Ii, i.e.,

uiðtÞ ¼
1

Dxi

Z x
iþ1

2

x
i�1

2

uðx; tÞdx: ð3Þ

Then, an equivalent formulation for (2) over the ith cell in terms of cell averages reads

duiðtÞ
dt

¼ � 1

Dxi
fðuðxiþ1

2
; tÞ; xiþ1

2
Þ

�
� fðuðxi�1

2
; tÞ; xi�1

2
Þ
�
þ 1

Dxi

Z x
iþ1

2

x
i�1

2

gðuðx; tÞ; xÞdx: ð4Þ

The discretization process consists of two parts. First, the time discretization of the left-hand side of (4) is

done by using a classical TVD Runge–Kutta method and second, for the discretization of the right-hand

side of (4) the finite volume WENO reconstruction is applied. Since the classical finite volume WENO

scheme considers just the homogeneous hyperbolic conservation law system, we develop here its extension

to the balance law with geometrical source term and with an additional extension to the spatially varied flux

function. For a detailed review of the standard WENO schemes we refer to the papers [8,25] and the lecture
notes [24].

The numerical approximation of the right-hand side of (4) we denote by Li,

Li ¼ � 1

Dxi
ðf iþ1

2
� f i�1

2
Þ þ 1

Dxi
Gi: ð5Þ

Here, the numerical flux f iþ1
2
represents the approximation for the term fðuðxiþ1

2
; tÞ; xiþ1

2
Þ, while Gi stands for

the numerical approximation to the integral of the source term over the cell Ii. The numerical flux is

evaluated by using an exact or approximate Riemann solver, i.e.,

f iþ1
2
¼ Fðu�iþ1

2
; uþ

iþ1
2

Þ ð6Þ

for the monotone numerical flux function F, which satisfies some requirements that are, for example, given
in [24]. The values u�

iþ1
2

and uþ
iþ1

2

are high-order pointwise approximation to the solution u at the ðiþ 1
2
Þth cell

boundary obtained from the known cell averages uiðtÞ, i ¼ 1; . . . ;N by using the WENO reconstruction

procedure.

We present here just the final expression of this reconstruction for any function v. Let us suppose the cell
average values vi of that function are known. Then, the ð2r � 1Þth-order WENO approximations v�

iþ1
2

on the

ðiþ 1
2
Þth cell boundary can be computed as

v�iþ1
2
¼
Xs�max

s¼s�
min

Xr�1

j¼0

xr;sðvÞa�r;s;jvi�rþ1þsþj: ð7Þ

Here, s�min ¼ 0, s�max ¼ r � 1, sþmin ¼ 1 and sþmax ¼ r. The coefficients a�r;s;j, j ¼ 0; . . . ; r � 1; s ¼ s�min; . . . ; s
�
max

depend on s, r and cell sizes Dxi, and not on the values vi. On the uniform mesh their values become in-

dependent on the cell sizes, and can be, for example, found in [24]. Furthermore, xr;sðvÞ, s ¼ s�min; . . . ; s
�
max

are the nonlinear weights which depend on the local smoothness of the function v over the stencil

Sr;s ¼ fxi�rþ1þs; . . . ; xiþsg, s ¼ s�min; . . . ; s
�
max. In this way all the candidate stencils Sr;s are included in this
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WENO reconstruction, which becomes, with the correct choices of the coefficients, ð2r � 1Þth-order ac-

curate.

There are two possible choices of the WENO reconstruction for the variable u: the componentwise and
the characteristicwise reconstruction. In the first case the reconstruction is made for each component of the

variable u separately, while in the second one the variable is first transformed into local characteristic fields

where the WENO reconstruction is made, and then transformed back into physical space (see [24] for

details).

After the values u�
iþ1

2

are determined, the approximate Riemann solver has to be applied. In this work the

Roe solver is used, therefore first the Roe average state has to be defined.

Suppose we have to find the Roe average euRoeðu0; u00Þ of the states u0 and u00 that are positioned at x0 and
x00, respectively. Since we consider the systems where the flux is spatially varying, if we denote the Jacobian
matrix of the flux with A and the spatial derivative of the flux with v, i.e., v ¼ of=ox, we have

df ¼ Aduþ vdx. Thus, it is natural to define the extended Roe average state euRoeðu0; u00Þ as the state in

which the following relation must hold:

f 00 � f 0 ¼ AðeuRoeðu0; u00ÞÞðu00 � u0Þ þ Vðu0; u00; x0; x00Þ: ð8Þ

In the above expression, the notations f 0 and f 00 are used for the values fðu0; x0Þ and fðu00; x00Þ, respectively.
AðeuRoeðu0; u00ÞÞ is the value of the Jacobian matrix at the extended Roe average state, while the term
Vðu0; u00; x0; x00Þ stands for the numerical approximation of vdx. The expressions for euRoeðu0; u00Þ and

Vðu0; u00; x0; x00Þ depend on the particular balance law, so we will compute them later.

Now the Roe approximate Riemann solver can be presented. As defined in [9], for the spatially varying

flux function it is given with

F u�
iþ1

2

; uþ
iþ1

2

� �
¼ 1

2
f�
iþ1

2

�
þ fþ

iþ1
2

�
� 1

2
R

iþ1
2

jK
iþ1

2

jL
iþ1

2

uþ
iþ1

2

�
� u�

iþ1
2

�
� 1

2
R

iþ1
2

K�1

iþ1
2

jK
iþ1

2

jL
iþ1

2

V
iþ1

2

: ð9Þ

Here, f�iþ1
2
¼ fðu�

iþ1
2

; xiþ1
2
Þ; Liþ1

2
, Riþ1

2
and Kiþ1

2
are matrices of the left eigenvectors, right eigenvectors and the

diagonalized matrix of the eigenvalues, respectively, which belong to the numerical approximation of the

Jacobian matrix Aðeuiþ1
2
Þ at the Roe average euiþ1

2
¼ euRoeðu�iþ1

2

; uþ
iþ1

2

Þ. The abbreviation Viþ1
2
is used for the term

Vðu�
iþ1

2

; uþ
iþ1

2

; xi; xiþ1Þ.
It remains to define the term Gi. As the pointwise treatment does not work well when the source term is

of the geometrical type, we apply here the idea of the source term decomposition (Fig. 1) and following [9]

we use the expression

Gi ¼ Gi�1
2
;R þGiþ1

2
;L þGi;C: ð10Þ

The first two terms in the above expression include the source term upwinding and are defined with

Giþ1
2
;L ¼ 1

2
I
�

� Riþ1
2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2

�
Giþ1

2
ð11Þ

and

Giþ1
2
;R ¼ 1

2
I
�

þ Riþ1
2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2

�
Giþ1

2
: ð12Þ

The terms Giþ1
2
¼ Gðu�

iþ1
2

; uþ
iþ1

2

Þ and Gi;C ¼ Gðuþ
i�1

2

; u�
iþ1

2

Þ, which are the approximations to the integrals of the

source term, should be determined when the particular balance law is considered. Their definition is crucial

for obtaining the balanced numerical scheme, i.e., the scheme that preserves some steady-state solutions as

will be described in the proceeding of this paper.
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The general formulation of the finite volume WENO scheme that we use in this paper can be concluded

now. However, we are left with the need for the appropriate definitions of the extended Roe average euiþ1
2
,

the term Viþ1
2
, and the approximations to the integrals of the source term Giþ1

2
and Gi;C.

At the end we refer to the order of accuracy of the considered schemes. Since we expect that the order of

accuracy is not deteriorated with the proposed extensions, the finite volume WENO scheme, which uses the

r points stencils should be ð2r � 1Þth-order accurate.
3. Central WENO schemes for balance laws

In this section we give a short overview of the central WENO schemes with the extension to the balance
laws. More detailed descriptions of the classical central approach can be found in various papers (see for

example [15,17,19,21,23]).

The construction of the central schemes is based on using the staggered grid. According to this, two sets

of cells are introduced: the nonstaggered cells Ii ¼ ½xi�1
2
; xiþ1

2
�, i ¼ 0; . . . ;N and the staggered cells

Iiþ1
2
¼ ½xi; xiþ1�, i ¼ 0; . . . ;N � 1. We restrict our discussion on the uniform cell size Dx. The extension of the

scheme to the nonuniform mesh is not possible here, since the conservative approximations to the flux

function derivatives on the nonuniform mesh, obtained by the WENO reconstruction procedure, do not

exist higher then second-order accurate [24]. The appropriate notations for the average value of the solution
at time t ¼ tn are used: uni denotes the average value of the solution over the nonstaggered cell Ii and uniþ1

2

denotes the average value over the staggered cell Iiþ1
2
. Integration of (1) over the control volume

Iiþ1
2
� ½tn; tnþ1� gives

unþ1

iþ1
2

¼ uniþ1
2
� 1

Dx

Z tnþ1

tn
fðuðxiþ1; tÞ; xiþ1Þdt

"
�
Z tnþ1

tn
fðuðxi; tÞ; xiÞdt

#
þ 1

Dx

Z tnþ1

tn

Z xiþ1

xi

gðuðx; tÞ; xÞdxdt:

ð13Þ

The expression (13) is used as the starting point of the central WENO scheme. All terms in this expression

should be appropriately discretized. By following [20] first the staggered cell averages uniþ1
2
are evaluated by

averaging the piecewise polynomial approximation
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bPðx; unÞ ¼X
i

bPiðxÞvIiðxÞ; ð14Þ

whose average over each cell Ii coincide with the known cell averaged values uni (Fig. 2).
bPiðxÞ are vectors of

the polynomial approximations, which must be determined such that the staggered averaged values eval-
uated as

uniþ1
2
¼ 1

Dx

Z
I
iþ1

2

bPðx; unÞdx ¼ 1

Dx

Z x
iþ1

2

xi

bPiðxÞdx

24 þ
Z xiþ1

x
iþ1

2

bP iþ1ðxÞdx

35 ð15Þ

become ð2r � 1Þth-order accurate approximations to the averaged values of the solution. The required

order of accuracy for integrals in (15) can be attained if they are found by the appropriate WENO re-

construction procedure. In the case of the constant cell sizes these integrals can be expressed as linear

combinations with constant coefficients of the known values uni , i.e., the relations

1

Dx

Z xi

x
i�1

2

bPiðxÞdx ¼
Xr�1

s¼0

Xr�1

j¼0

bxr;sðuÞb�r;s;jui�rþ1þsþj; ð16Þ
1

Dx

Z x
iþ1

2

xi

bPiðxÞdx ¼
Xr�1

s¼0

Xr�1

j¼0

bxr;sðuÞbþr;s;jui�rþ1þsþj ð17Þ

are valid if ðr � 1Þth degree polynomial reconstruction is used. Here, b�r;s;j and bþr;s;j, s; j ¼ 0; . . . ; r � 1 are the

appropriate precomputed interpolation coefficients that do not depend on the reconstruction values. The
nonlinear weights bxr;sðuÞ; s ¼ 0; . . . ; r � 1 are computed as usually in the WENO reconstruction procedure

by using the linear weights, which are obtained by imposing the accuracy conditions for integrals in (16)

and (17), and the smoothness indicators that are the smoothness measures of the reconstructed function u.

The detail description of the whole procedure can be found in [20,23]. The coefficients b�r;s;j and bþr;s;j for the
cases r ¼ 3 and 5 are given in [23]. The linear weights that lead to ð2r � 1Þth-order approximation in the
Fig. 2. Polynomial reconstructions and time evolution of the staggered average values in the central WENO scheme.
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WENO reconstruction are also presented in [23]. In the expressions (16) and (17) for the WENO recon-

structions, we use the componentwise approach, which means that all the operations and also the

smoothness indicators evaluations have to be performed componentwise. However, there is a possibility of
performing the WENO reconstructions on the local characteristic variable and then of transforming the

obtained values back into physical space, as it is already mentioned in the previous section, but then the

balanced numerical scheme cannot be obtained. A detailed study of both mentioned approaches is given in

[23].

The second part of our central WENO scheme is related to the evaluation of the flux and the source term

integrals in (13). Let us suppose that the CFL condition of the form

Dt <
Dx

2maxi qðAðuiÞÞ
ð18Þ

is satisfied, where q denotes the spectral radius of the Jacobian matrix AðuiÞ. Under that assumption the

discontinuities starting from the boundaries of the cell Ii do not arrive to its center until the next time

step, thus the values under the integrals in (13) remain smooth. Therefore, these integrals can be nu-

merically approximated by using some classical approach. If we use the Gauss quadrature formula, we

have Z tnþ1

tn
fðuðxi; tÞ; xiÞdt � Dt

Xk
l¼1

alfðuðxi; tn þ blDtÞ; xiÞ ð19Þ

and Z xiþ1

xi

Z tnþ1

tn
gðuðx; tÞ; xÞdxdt � DtDx

Xk
l¼1

alegðuðxi; tn þ blDtÞ; uðxiþ1; tn þ blDtÞÞ: ð20Þ

The parameters al and bl are the weights and the nodes of the particular quadrature formula. Similarly, the

trapezoidal or Simpson formulas can be applied. In this work we typically use the three-point Gauss

quadrature formula. There are two tasks in the expressions (19) and (20) that must be performed yet. First,

the values uðxi; tn þ blDtÞ must be evaluated and second, the approximation egðuðxi; tn þ blDtÞ; uðxiþ1;
tn þ blDtÞÞ to the source term has to be defined.

The approximations to the point values uðxi; tn þ blDtÞ; l ¼ 1; . . . ; k can be found as the solutions of the

Cauchy problem

duðxi; tÞ
dt

¼ �fxðuðx; tÞ; xÞjx¼xi
þ giðtÞ; ð21Þ
uðxi; tnÞ � uni : ð22Þ

Here, the notation giðtÞ is used for the value of the source term at the considered time t at the point xi, i.e.,
giðtÞ ¼ gðuðxi; tÞ; xiÞ. The computation of (21) and (22) is divided into two separate tasks.

First, the initial condition uni in (22) is computed from the known cell averages funi g by the WENO

reconstruction procedure. We take the WENO reconstruction that produces the approximation for the

point value uðxi; tnÞ that is ð2r � 1Þth-order accurate. When constant mesh size is used, the values obtained

by this WENO reconstruction can be expressed as the linear combination of the values funi g, i.e.,

uni ¼
Xr�1

s¼0

Xr�1

j¼0

exr;sðunÞcr;s;juni�rþ1þsþj: ð23Þ
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The constants cr;s;j, s; j ¼ 0; . . . ; r � 1 are the appropriate interpolation coefficients. The weightsexr;sðunÞ; s ¼ 0; . . . ; r � 1 are again computed by using the same smoothness indicators as before in (16) and

(17), but with different linear weights obtained by imposing the required order of accuracy at the given
point. For r ¼ 3 and 5, the coefficients cr;s;j and the linear weights can be found in [23].

If the values uðxi; tn þ blDtÞ; l ¼ 1; . . . ; k are evaluated from the differential equation (21) by using the

classical Runge–Kutta method, the complete evaluation procedure should be applied k times. Instead, we

can reduce our computations if the natural continuous extension of the Runge–Kutta method is used (see

[20,23] for details). In that case, at each time step, the Runge–Kutta method must be applied only once.

According to the procedure that is described, for example, in [20,23], we proceed as follows. First, the

classical m-stage Runge–Kutta method

unþ1
i ¼ uni þ Dt

Xm
j¼1

bjL
ðjÞ
i ð24Þ

is applied. Here, L
ðjÞ
i denotes the approximation to the right-hand side of (21) at the state

u
ðjÞ
i ¼ uni þ Dt

Pj�1

k¼1 ajkL
ðkÞ
i . The coefficients bj; j ¼ 1; . . . ; m and ajk; j; k ¼ 1; . . . ; m are the known Runge–

Kutta coefficients. By using the evaluated approximations L
ðjÞ
i and appropriate polynomial coefficients bjðhÞ

of the natural continuous extension of the Runge–Kutta scheme, the values uðxi; tn þ hDtÞ, 06 h6 1 can be

approximated by using the formula

uðxi; tn þ hDtÞ ¼ ui
n þ Dt

Xm
j¼1

bjðhÞLðjÞ
i : ð25Þ

The coefficients bjðhÞ can be found in [20,23]. Finally, by using (25), all the values uðxi; tnþ
blDtÞ; l ¼ 1; . . . ; k can be determined.

Now it remains to find the approximations of the right-hand side of (21), i.e., to find the values L
ðjÞ
i .

Here, we follow the WENO reconstruction again. As the classical WENO schemes are based on imposing

ð2r � 1Þth-order accuracy on the cell boundaries, the approximation of the term oxfðuðjÞ; xÞjx¼xi
can be

evaluated by using the expression

1

Dx
f�iþ1

2

�
� fþi�1

2

�
; ð26Þ

where f�iþ1
2
denotes the value of the polynomial approximation PiðxÞ at the point xiþ1

2
, while fþi�1

2
represents its

value at xi�1
2
. PiðxÞ is here the ð2r � 1Þth-order accurate polynomial approximation to the flux f obtained by

the WENO reconstruction over all the stencils that include the point xi. The values that are needed can be

evaluated as the linear combinations

f�iþ1
2
¼ Piðxiþ1

2
Þ ¼

Xr�1

s¼0

Xr�1

j¼0

xr;sðfÞa�r;s;jf i�rþ1þsþj; ð27Þ
fþi�1
2
¼ Piðxi�1

2
Þ ¼

Xr�1

s¼0

Xr�1

j¼0

xr;sþ1ðfÞaþr;sþ1;jf i�rþ1þsþj; ð28Þ

where f i ¼ fðuðjÞi ; xiÞ. The coefficients a�r;s;j and aþr;s;j, s; j ¼ 0; . . . ; r � 1 are the same as in (7) and the non-

linear weights xr;sðfÞ; s ¼ 0; . . . ; r � 1 are also evaluated at the same manner as in (7). Finally, we can

conclude that the presented approximation for the flux derivative is ð2r � 2Þth-order accurate.
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The source term at the point xi that appears in (21) can be evaluated just pointwise, or some other

approach depending on the particular conservation law can be used, as we will see in the proceeding of this

work.
Let us resume the whole described procedure of the central WENO scheme. It could be divided in two

steps, the predictor and the corrector step. In the predictor step the values uðxi; tn þ blDtÞ; l ¼ 1; . . . ; k
should be determined from (21) and (22) by using (25). Here, the two WENO reconstructions are performed

– the first one evaluates the approximations to the point values from the cell averages, while the second one

approximates the flux derivative. In the corrector step of the scheme the obtained values are used in the

expressions (19) and (20) that are included in (13) for evaluating the time evolution of the staggered average

values (see Fig. 2). In this step the WENO reconstruction is used to evaluate the staggered average values.

Such a defined numerical scheme is ð2r � 1Þth-order accurate. Bearing in mind that the terms related to the
source term evaluation, which are dependent on the particular balance law still need to be defined, we

conclude the process of evaluation of the new staggered values unþ1

iþ1
2

. With this, the time step in the classical

central WENO scheme is finished. At the next time step, by applying the same procedure the new non-

staggered values unþ2
i would be obtained.

However, we concentrate in this work on the nonstaggered central WENO scheme. That means at each

time step we must return to the nonstaggered mesh. Following [15], after the staggered values unþ1

iþ1
2

are

obtained, the nonstaggered values unþ1
i can be predicted by averaging the WENO reconstruction based on

the obtained staggered values over the nonstaggered cells. Of course, a similar reconstruction as the one
defined with (14)–(17) is used. We remark here that the nonstaggered approach is adequate for the balance

laws that include some spatially dependent terms whose values are known at the centers xi of the non-

staggered cells Ii only, such is the case in this paper. The standard central WENO scheme would not be

appropriate in that case.
4. Application to the open-channel flow and the shallow water equations

We study now the application of our schemes to the one-dimensional open-channel flow equations. They

are obtained if in (1) we take

u ¼ A
Q

� �
; f ¼ Q

Q2

A þ gI1

� �
; g ¼ 0

gI2 � gA dz
dx � gASf

� �
: ð29Þ

Here, A ¼ Aðx; tÞ is the wetted cross-section area, Q ¼ Qðx; tÞ is the discharge, g is the gravitational constant

and z ¼ zðxÞ is the bed level. The additional terms in (29) are the hydrostatic pressure force term I1 ¼ I1ðx; tÞ
defined with

I1ðx; tÞ ¼
Z hðx;tÞ

0

ðh� fÞBðx; fÞdf; ð30Þ

the term I2 ¼ I2ðx; tÞ that represents the forces related to changes of the channel width

I2ðx; tÞ ¼
Z hðx;tÞ

0

ðh� fÞ oB
ox

ðx; fÞdf; ð31Þ

and the friction slope

Sf ¼
M2QjQj
A2R4=3

; ð32Þ
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which models the friction forces through the channel. Here, M ¼ MðxÞ is the Manning’s friction factor,

while R ¼ Rðx;AÞ is the cross-section hydraulic radius. The width of the cross-section area on the depth f,
Bðx; fÞ, is connected with the wetted cross-section area by the following relation:

Aðx; tÞ ¼
Z hðx;tÞ

0

Bðx; fÞdf; ð33Þ

where h is the water depth. Bðx; hÞ is the width of the free surface at the observed cross-section profile.

As a special case of the open-channel flow equations, where the width of the rectangular channel is

constant, we obtain the shallow water equations, which are given with

u ¼ h
hv

� �
; f ¼ hv

hv2 þ 1
2
gh2

� �
; g ¼ 0

ghð� dz
dx �

M2vjvj
h4=3

Þ

� �
: ð34Þ

Here, v ¼ vðx; tÞ denotes the water velocity. One can notice that by changing the variables ðA;QÞ with

ðh; hvÞ, the expressions in (34) are obtained from (29). Thus, with the definitions of the terms that arise in
the numerical schemes for the open-channel flow equations, the terms for the shallow water case will be

automatically defined.

For the complete definition of the numerical schemes presented in the previous sections it remains

to determine some terms. By imposing the requirement of preserving some steady-state solutions, we

obtain the schemes that we refer to as to the balanced numerical schemes, since the zero time

evolution in the case of the steady state implies that the flux gradient and the source term are in

balance. It would be perfect if the balancing could be obtained on the numerical level too. Precisely,

here we want that the numerical scheme preserves the quiescent flow exactly and we say that then it
satisfies the exact conservation property. The solution in the case of the quiescent flow case is given

with

hþ z ¼ H ¼ const: and Q ¼ 0: ð35Þ

Before we apply our numerical schemes, let us observe that in the case of the still water (35) the friction

term disappears. Therefore, it will have no effect to the exact conservation property of the numerical

schemes. In this paper the semi-implicit treatment of the friction term (see [4]) is used and it is excluded

from the numerical source term definitions in the following sections.

4.1. Application of the finite volume WENO schemes

For the complete definition of the finite volume WENO scheme there are few terms that should be now

defined. First, the term Vðu0; u00; x0; x00Þ that appears in the relation (8) should numerically approximate the

term

vdx ¼ 0
g oI1

ox

��
A¼const:

dx

� �
: ð36Þ

In [30], we showed that Eq. (8) is fulfilled if we define the Roe average euRoeðu0; u00Þ of the states u0 and u00

with

evRoe ¼
ffiffiffiffiffi
A0

p
v0 þ

ffiffiffiffiffi
A00

p
v00ffiffiffiffiffi

A0
p

þ
ffiffiffiffiffi
A00

p ; ð37Þ

where the relation eQRoe ¼ eARoeevRoe is valid. The approximation for the average eARoe can be chosen arbi-

trarily and we use just
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eARoe ¼
A0 þ A00

2
: ð38Þ

By following [30], we approximate (36) with

Vðu0; u00; x0; x00Þ ¼ 0

gðI 001 � I 01Þ � ec2ðA00 � A0Þ

� �
; ð39Þ

where ec stands for the numerical approximation of the term c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðoI1=oAÞjx¼const:

p
. Since

ðoI1=oAÞjx¼const: ¼ ðA=BÞ, the term c can be approximated as

ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g
eARoeeB

s
: ð40Þ

The approximation for eB is still open and we use the simple arithmetic average.

If we suppose in the open-channel flow equations that B ¼ const:, it follows that A ¼ hB, I1 ¼ 1
2
h2B and

c ¼
ffiffiffiffiffi
gh

p
, thus the relation (39) becomes equal zero. This is what we expect, since in the shallow water case

the flux is not spatially dependent.

At the ðiþ 1
2
Þth cell boundary the Roe average state is taken as euiþ1

2
¼ euRoeðu�iþ1

2

; uþ
iþ1

2

Þ. Similarly, the terms

Viþ1
2
and ciþ1

2
are predicted from (39) and (40) by including the values u�

iþ1
2

, uþ
iþ1

2

, xi and xiþ1 instead of u0, u00, x0

and x00. The eigenvalues kðpÞ
iþ1

2

; p ¼ 1; 2, left and right eigenvectors, l
ðpÞ
iþ1

2

and r
ðpÞ
iþ1

2

; p ¼ 1; 2 of the Jacobian

matrix at the state euiþ1
2
are evaluated from

kð1Þ ¼ v� c; kð2Þ ¼ vþ c; ð41Þ
lð1Þ ¼ 1

2c
kð2Þ

�1

� �
; lð2Þ ¼ 1

2c
kð1Þ

1

� �
and rðpÞ ¼ 1

kðpÞ

� �
: ð42Þ

An important thing must be emphasized in connection with the evaluation of the states u�
iþ1

2

. The value of

the first component A of the variable u at the cell boundary is not reconstructed directly. Instead, we

proceed in the next way. We evaluate first the values hi from the known values Ai. Then the values h�
iþ1

2

are

determined by the WENO reconstruction, and finally, we use the obtained water depth at the cell interfaces

to evaluate the corresponding wetted cross-section areas A�
iþ1

2

.
Now the source term approximations should be defined. If we include the analytical connection

I2 ¼ ðoI1=oxÞ � Aðoh=oxÞ into the source term (29), it is natural to take

Giþ1
2
¼ Gðu�iþ1

2
; uþ

iþ1
2

Þ ¼
0

gðIþ
1;iþ1

2

� I�
1;iþ1

2

Þ � gAiþ1
2
ðHþ

iþ1
2

� H�
iþ1

2

Þ

 !
; ð43Þ

where H�
iþ1

2

¼ h�
iþ1

2

þ z�
iþ1

2

. There are two possible ways to determine the values H�
iþ1

2

. The first one is to use the
values Hi ¼ hi þ zi in the WENO reconstruction and to evaluate H�

iþ1
2

directly. The second one is to compute

the heights of the riverbed z�
iþ1

2

at the ðiþ 1
2
Þth cell boundary and add it to h�

iþ1
2

. We evaluate the terms z�
iþ1

2
from the known values zi at the cell centers, by using the WENO reconstruction procedure with the

smoothness indicators of the water depth variable h. Since the values h�
iþ1

2

, which we need in that case have

been already determined in the numerical flux evaluation, in both cases only one additional WENO re-

construction is needed.
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The second part in the source term approximation that is essential for obtaining the balanced numerical

scheme is given with

Gi;C ¼ Gðuþ
i�1

2

; u�iþ1
2
Þ ¼

0

gðI�
1;iþ1

2

� Iþ
1;i�1

2

Þ � g
Aþ
i�1

2

þA�
iþ1

2

2
ðH�

iþ1
2

� Hþ
i�1

2

Þ

 !
: ð44Þ

In the shallow water case, the terms defined with (43) and (44) reduce to

Giþ1
2
¼ G u�iþ1

2
; uþ

iþ1
2

� �
¼

0

�g
h�
iþ1

2

þhþ
iþ1

2

2
zþ
iþ1

2

� z�
iþ1

2

� � !
ð45Þ

and

Gi;C ¼ G uþ
i�1

2

; u�iþ1
2

� �
¼

0

�g
hþ
i�1

2

þh�
iþ1

2

2
z�
iþ1

2

� zþ
i�1

2

� � !
; ð46Þ

respectively.

We claim that such a defined numerical scheme satisfies the exact conservation property. In order to

establish this statement we must prove that under the quiescent flow condition (35) the numerical ap-

proximation of the space operator (5) is equal zero, i.e.,

Li ¼ 0: ð47Þ

By including the definitions (6), (8), and (10)–(12) in (5), we obtain quite a large expression whose value

should be zero. We divide this expression in few parts and prove that each of them is equal zero. The

following relations have to be established

fþiþ1
2
þ f�iþ1

2
� fþi�1

2
� f�i�1

2
� Giþ1

2

�
þGi�1

2
þ 2Gi;C

�
¼ 0 ð48Þ

and

Riþ1
2
jKiþ1

2
jLiþ1

2
uþ
iþ1

2

�
� u�iþ1

2

�
þ Riþ1

2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2
Viþ1

2
� Riþ1

2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2
Giþ1

2
¼ 0: ð49Þ

Since in the quiescent flow case the first component of each term on the left-hand side of (48) is equal zero,

it is enough to prove that the terms appearing in the second component of this expression vanish. With

quite simple numerical calculations we can show that when the numerical fluxes in the quiescent flow case

and expressions (43) and (44) are included in (48), the terms related to I1 cancel out, therefore we only need

to verify if the relations

H�
iþ1

2
¼ h�iþ1

2
þ z�iþ1

2
¼ H ¼ const:; i ¼ 1; . . . ;N ð50Þ

hold. This is fulfilled for both the WENO reconstructions we propose before. Namely, since the equality

Xs�max

s¼s�
min

Xr�1

j¼0

xr;sa�r;s;j ¼ 1; ð51Þ

is valid, in the first case, where the values H�
iþ1

2

are reconstructed from the values Hi ¼ hi þ zi, which are

constant in the quiescent flow case, the relations (50) are obviously satisfied. In the second case, where the

values h�
iþ1

2

and z�
iþ1

2

are reconstructed separately, but with the same weight values xr;s ¼ xr;sðhÞ, we obtain
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h�iþ1
2
þ z�iþ1

2
¼
Xs�max

s¼s�
min

Xr�1

j¼0

xr;sa�r;s;jðhi�rþ1þsþj þ zi�rþ1þsþjÞ ¼ H : ð52Þ

The last equality follows from (51) and from the relations hi þ zi ¼ H ; i ¼ 0; . . . ;N . With this (48) is
proved.

Now we concentrate on the left-hand side of (49). Under the quiescent flow assumptions, we obtain

Riþ1
2
jKiþ1

2
jLiþ1

2
uþ
iþ1

2

�
� u�iþ1

2

�
¼ ciþ1

2
ðAþ

iþ1
2

� A�
iþ1

2

Þ
0

� �
; ð53Þ

and

Riþ1
2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2
Viþ1

2
¼ 1

ciþ1
2

gðIþ
1;iþ1

2

� I�
1;iþ1

2

Þ � c2
iþ1

2

ðAþ
iþ1

2

� A�
iþ1

2

Þ
0

� �
: ð54Þ

Moreover, for the part related to the source term approximation we find that

Riþ1
2
K�1

iþ1
2
jKiþ1

2
jLiþ1

2
Giþ1

2
¼ 1

ciþ1
2

gðIþ
1;iþ1

2

� I�
1;iþ1

2

Þ � ðA�
iþ1

2

þ Aþ
iþ1

2

ÞðHþ
iþ1

2

� H�
iþ1

2

Þ
0

� �
: ð55Þ

Finally, by putting together (53)–(55), and by using (50) we can easily see that (49) holds. With this the

proof of the exact conservation property is finished. The same relations hold if the indices ðiþ 1
2
Þ are

changed with ði� 1
2
Þ. Finally, by putting together proved equations (48) and (49), we finish the proof of the

exact conservation property for our scheme.

4.2. Application of the central WENO schemes

The first thing we must emphasize in connection with application of the nonstaggered central WENO

schemes to the open-channel flow equations is that we could not obtain balancing for the channel with the

arbitrary cross-sections, but only for the case of prismatic channel with variable width. In that case the

channel cross-sections are rectangular and the relation A ¼ hB is valid.

For applying the central WENO schemes to the open-channel flow equations there are two terms cor-

responding to the source term approximation that still need to be determined. But there are also some

additional corrections that we introduce when the central WENO schemes are applied to the considered
balance law.

Let us consider the predictor step of the scheme. First, we adapt the flux derivative approximation at

the point xi that is defined with (26)–(28). However, we change this evaluation in order to obtain bal-

ancing between the flux gradient and the source term. More precisely, we change the terms f�iþ1
2
in (26)

with terms bf�iþ1
2
, which are the WENO reconstruction values of the functions bf ¼ f � fI� , where I� ¼ i and

Iþ ¼ iþ 1. One can notice that the value of the derivative approximation will not change with this

modification.

The term giðtÞ that arises in (21) we compute by using the decomposed approach

giðtÞ ¼ gi;LðtÞ þ gi;RðtÞ: ð56Þ

We define

gi;RðtÞ ¼
1

Dx
bG�

iþ1
2

and gi;LðtÞ ¼
1

Dx
bGþ

i�1
2
; ð57Þ
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where bG�
iþ1

2
denote the values of the WENO reconstruction procedure (27) on the ðiþ 1

2
Þth cell boundary for

the functions

bG� ¼ 0

�gðI1 � I1;I�Þ � g AþAI�
2

ðH � HI�Þ

� �
; ð58Þ

with I� ¼ i and Iþ ¼ iþ 1. Thus, the approximation L
ðjÞ
i to the right-hand side of (21) can be written in the

form

L
ðjÞ
i ¼ � 1

Dx
bf�iþ1

2

�
� bfþi�1

2
� bG�

iþ1
2
� bGþ

i�1
2

�
: ð59Þ

Moreover, instead of using the smoothness indicators for each of the functions bf� and bG� separately, we

use the smoothness indicators of the functions bf� � bG�. More precisely, when the terms bf�iþ1
2
and bG�

iþ1
2
are

evaluated we use the smoothness measures of the function bf� � bG�, and for bfþi�1
2
and bGþ

i�1
2
the smoothness

measures that belong to the function bfþ þ bGþ.

In the corrector step we define first the approximation for the source term that appears in (20)

with

egðuðxi; tÞ; uðxiþ1; tÞÞ ¼
1

Dx
0

gðI1ðxiþ1; tÞ � I1ðxi; tÞÞ � g Aðxi;tÞþAðxiþ1;tÞ
2

ðHðxiþ1; tÞ � Hðxi; tÞÞ

� �
: ð60Þ

In the shallow water case the same algorithm is used and the terms defined with (58) and (60) reduce in

the similar way as the source terms that appear in the finite volume WENO schemes.
What we have to do now is to concentrate on the algorithm of passing from the nonstaggered values uni

to the staggered ones, uniþ1
2
, and also, after the time evolution of the staggered values is applied and the

values unþ1

iþ1
2

are computed, on the algorithm of returning to the nonstaggered mesh with the new obtained

values unþ1
i . In order to obtain balanced numerical scheme the algorithm is adapted, but only in the first

component of u. Since we consider here only rectangular channels, the relation A ¼ hB holds. First, instead

of evaluating the values An
iþ1

2

, as the average value of the WENO reconstruction over the cell Iiþ1
2
, we apply

the WENO reconstruction to the function H ¼ A
B þ z and then by using (15)–(17), we obtain the values Hn

iþ1
2

.

Moreover, the connection between the time evolution of Hn
iþ1

2

and the time evolution of An
iþ1

2

is given through
the relation DH=Dt ¼ ð1=BÞðDA=DtÞ, since the riverbed z does not vary with time. After the values Hnþ1

iþ1
2

are

determined, in the process of obtaining the nonstaggered values back, we again use the water level variable

H and evaluate Hnþ1
i . Finally, by applying the simple relation Anþ1

i ¼ BiðHnþ1
i � ziÞ the new nonstaggered

values unþ1
i are evaluated.

At this point it is clear that the described procedure could not be applied to the arbitrary cross-section

channel. Namely, in general case there exists no relation for obtaining the time evolution of Hn
iþ1

2

from the

time evolution of An
iþ1

2

since these values are connected with the integral (33) and moreover, both are av-

eraged over the staggered cell.
We want to prove now that the defined numerical scheme preserves the quiescent flow. The proof is

divided in three steps. In the first one we prove that the time evolution in the predictor step of the scheme is

equal zero. That is the case if the relations

L
ðjÞ
i ¼ 0; j ¼ 1; . . . ; m ð61Þ

are valid. In the second step we want to prove that the time evolution in the corrector step is also equal zero.

Finally, in the last step we must prove that the transformations from the nonstaggered to the staggered

mesh and in the opposite direction preserves the quiescent flow values.

Since for both terms that appear in bf�iþ1
2
� bG�

iþ1
2
, we use the same linear weights in the WENO recon-

struction, the given difference is actually the WENO reconstruction of the function bf� � bG�. In the same
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way bfþi�1
2
þ bGþ

i�1
2
is the WENO reconstruction for bfþ þ bGþ. According to the WENO reconstruction process

the equalities

bf�k � bG�
k ¼ 0 and bfþk þ bGþ

k ¼ 0; k ¼ 0; . . . ;N ; ð62Þ

would imply bf�i�1
2
� bG�

i�1
2
¼ 0 and bfþi�1

2
þ bGþ

i�1
2
¼ 0, and therefore imply the validity of (61) also. The relations

(62) are very easy to check, so we omit the proof here. With this we have proved that the numerical ap-

proximation of the right-hand side of (21) is equal zero, and therefore we have

unþ1
i ¼ uni and uðjÞi ¼ uni ; j ¼ 1; . . . ; m: ð63Þ

As the consequence of that, we obtain

uðxi; tn þ blDtÞ ¼ uni ; l ¼ 1; . . . ; k: ð64Þ

By including the expressions (19), (20), and (60) in (13), and by using (64), we find that in the quiescent

flow case the staggered values do not evolve in time. That means

unþ1

iþ1
2

¼ uniþ1
2
: ð65Þ

The last step of the proof is to check whether the finally obtained nonstaggered values, under the quiescent

flow conditions, satisfy

unþ1
i ¼ uni : ð66Þ

With that the exact conservation property of the proposed numerical scheme will be established.

Notice first that the second component of the variable u is equal zero in the quiescent flow case. This is
the case for the nonstaggered values and for the staggered once too. Hence, we concentrate just on the first

component of the variable u. Because of ðAn
i =BÞ þ zi ¼ Hi ¼ const:; i ¼ 1; . . . ;N the WENO reconstruction

of H will be constant, so the average values Hn
iþ1

2

of that WENO reconstruction will have the same values for

i ¼ 1; . . . ;N . As the consequence of (65), that constant value of H remains the same at the new time level.

The process of obtaining the nonstaggered values Hnþ1
i is done again by WENO reconstruction and will

obviously give us the same value. At the end the values Anþ1
i will also remain the same. With that the exact

conservation property is proved.
5. Numerical results

We apply the presented schemes to both balance laws considered in this paper. With the numerical
results we want to show the improvement achieved with the modified version of the schemes in

comparison with the standard ones. We also compare our schemes with some other numerical schemes

that are developed for the shallow water and the open-channel flow equations, such as the balanced

first-order Roe [2] and the balanced second-order flux limited scheme [9] with the minmod limiter

function [19].

In all the tests where the finite volume WENO schemes are applied, they are used with the third-order

Runge–Kutta time integration. In the WENO reconstructions only the componentwise approach is used.

Furthermore, the central WENO schemes with r ¼ 3 are combined with the second-order Runge–Kutta
method, while for the case r ¼ 5, the fourth-order Runge–Kutta method is used. Both Runge–Kutta

methods are used with their appropriate natural continuous extensions of the same order. If not stated

otherwise, the channels in the test cases are supposed to be frictionless.
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5.1. Shallow-water equations

5.1.1. An accuracy test over an exponential bump

First, we perform an accuracy test for the developed numerical schemes. In this problem the riverbed is

defined with

zðxÞ ¼ 0:2 exp

�
� 4

25
ðx� 10Þ2

�
ð67Þ

over the domain [0,20]. On the left boundary constant discharge equal 1 m2/s is imposed, while on the right

boundary the water depth of 1 m is fixed. The initial water level is defined as the stationary solution related

to the constant discharge of 1 m2/s. It can be evaluated analytically and is presented in Fig. 3. Since the

numerical scheme is actually designed such that only the quiescent flow is exactly preserved, here, for

the stationary solution, some numerical errors depending on the used space step occur. As we already stated

the third order Runge–Kutta method is used when the finite volume WENO schemes are considered. In

order to compensate for the lower order of temporal accuracy, we adjust the time step to Dt / ðDxÞR=3, so
that the third-order Runge–Kutta time integration is effectively Rth order, where R ¼ 2r � 1 stands for the

accuracy of the WENO reconstruction. In such a way the time and the spatial accuracy become of the same

order and we can check for the order of accuracy of our schemes. We compute the solution up to t ¼ 0:0001
s. In Tables 1 and 2, we present the accuracy test results and computed orders of accuracy of the considered

WENO schemes. In order to make a comparison, we present the orders of accuracy for the pointwise finite

volume WENO schemes also (Table 1). Let us remember that the original WENO schemes are

R ¼ 2r � 1-order accurate. We can see that the numerical errors and orders of accuracy are similar for

the pointwise and the balanced versions of schemes. Therefore, we can conclude that the orders of accuracy
are not deteriorated with the reformulations introduced in this work for the considered balance law. All the

schemes actually achieve their designed order of accuracy except for the higher-order finite volume WENO

schemes. The reason of this reduced order of accuracy does not lie in the reformulation of the scheme but it

is the consequence of the accumulation of the round-off errors when large number of numerical operations

are executed. For the central WENO scheme one can note that the orders of accuracy correspond to the

theoretical ones, but the L1 and L1 errors are greater then in the finite volume WENO case. We think that

the main reason of such a behaviour lies in averaging of the variables in each step of the scheme.
Fig. 3. Initial conditions for the test problem 5.1.1.



Table 1

Accuracy of the balanced finite volume WENO (test problem 5.1.1)

r N Balanced Pointwise

L1 error L1 order L1 error L1 order L1 error L1 order L1 error L1 order

2 40 3.95� 10�8 1.13� 10�8 5.92� 10�7 2.13� 10�7

80 7.39� 10�9 2.42 2.72� 10�9 2.05 1.60� 10�7 1.88 1.09� 10�7 0.97

160 1.05� 10�9 2.81 4.18� 10�10 2.70 3.98� 10�8 2.01 5.47� 10�8 0.99

320 2.86� 10�10 1.88 1.60� 10�10 1.39 9.60� 10�9 2.05 2.46� 10�8 1.15

3 40 1.05� 10�8 3.10� 10�9 3.10� 10�8 8.08� 10�9

80 5.32� 10�10 4.30 2.01� 10�10 3.95 1.37� 10�9 4.49 5.56� 10�10 3.86

160 2.02� 10�11 4.72 1.11� 10�11 4.17 4.76� 10�11 4.85 2.33� 10�11 4.58

320 7.79� 10�13 4.70 5.50� 10�13 4.34 1.63� 10�12 4.87 7.80� 10�13 4.90

4 20 4.12� 10�8 1.22� 10�8 1.50� 10�7 4.57� 10�8

40 2.19� 10�9 3.10 1.78� 10�9 2.77 4.52� 10�9 5.05 3.47� 10�9 3.72

80 4.70� 10�11 5.54 5.24� 10�11 5.09 7.98� 10�11 5.82 8.91� 10�11 5.28

160 6.26� 10�13 6.23 1.06� 10�12 5.63 1.09� 10�12 6.20 1.99� 10�12 5.48

5 20 4.56� 10�8 1.70� 10�8 8.65� 10�8 3.33� 10�8

40 6.92� 10�10 6.04 4.12� 10�10 5.36 7.20� 10�10 6.91 4.03� 10�10 6.37

80 3.20� 10�12 7.75 1.91� 10�12 7.75 3.14� 10�12 7.84 1.82� 10�12 7.79

160 4.00� 10�14 6.32 1.02� 10�14 7.55 1.49� 10�13 4.40 3.20� 10�13 2.51

6 20 3.00� 10�8 1.07� 10�8 4.67� 10�8 1.82� 10�8

40 4.12� 10�10 6.19 2.46� 10�10 5.44 4.31� 10�10 6.76 2.72� 10�10 6.06

80 2.53� 10�12 7.34 1.28� 10�12 7.59 4.43� 10�13 9.93 2.50� 10�13 10.09

160 3.75� 10�14 6.08 1.02� 10�14 6.97 5.38� 10�14 3.04 2.00� 10�14 3.65

Table 2

Accuracy of the balanced central WENO schemes (test problem 5.1.1)

r N L1 error L1 order L1 error L1 order

3 20 2.43� 10�2 7.16� 10�3

40 1.40� 10�3 4.11 4.19� 10�4 4.09

80 3.91� 10�5 5.16 1.74� 10�5 4.59

160 7.09� 10�7 5.79 4.50� 10�7 5.27

320 1.15� 10�8 5.95 7.92� 10�9 5.82

5 20 8.34� 10�3 3.20� 10�3

40 1.03� 10�4 6.34 5.20� 10�5 5.94

80 2.06� 10�7 8.96 1.18� 10�7 8.78

160 4.78� 10�10 8.76 3.49� 10�10 8.40
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It would be interesting to compare the presented numerical errors and orders of accuracy for the WENO

schemes with errors and orders of some first and second-order schemes. Therefore, we evaluate the nu-

merical errors and orders of accuracy for the balanced first-order Roe and the second-order flux limited

scheme (Table 3). One can notice that for the considered steady-state test problem the achieved orders of

accuracy are higher then theoretical ones.

5.1.2. LeVeque test example over bump

In this test problem suggested by LeVeque [18], we want to compute the solutions obtained when a small

perturbation of the initially still water arises. In this way we test whether the numerical scheme attains the

correct wave speed propagation. The bottom topography is defined with



Table 3

Accuracy of the balanced first-order Roe and the balanced second-order flux limited scheme (test problem 5.1.1)

Numerical method N L1 error L1 order L1 error L1 order

First-order Roe 20 4.17� 10�9 8.97� 10�10

40 5.33� 10�10 2.97 1.44� 10�10 2.64

80 7.05� 10�11 2.92 2.03� 10�11 2.82

160 8.93� 10�12 2.98 2.62� 10�12 2.95

Second-order flux limited 20 1.41� 10�9 2.80� 10�10

40 7.02� 10�11 4.33 3.25� 10�11 3.13

80 5.06� 10�12 3.79 1.84� 10�12 4.12

160 3.62� 10�13 3.80 1.10� 10�13 4.06
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zðxÞ ¼ 0:25ðcosð10pðx� 0:5ÞÞ þ 1Þ if jx� 0:5j < 0:1;
0 otherwise

	
ð68Þ

over a domain ½0; 1�. The initial conditions are

hðx; 0Þ ¼ 1:0� zðxÞ þ � if 0:1 < x < 0:2;
1:0� zðxÞ otherwise

	
and vðx; 0Þ ¼ 0: ð69Þ

As in [18] we take g ¼ 1. The initial perturbation splits into two waves that propagate in opposite direc-

tions. All the numerical results are presented at time t ¼ 0:7 s when the left moving wave already leaves the

numerical domain, while the right going wave passes over the bump. In this test example we consider our

schemes from different viewpoints.

First, we take � ¼ 0:001. Since the main contribution of the schemes proposed in the paper is balancing,
it is natural to show the comparison of the balanced and the pointwise versions of proposed schemes. In

Fig. 4, we present results obtained with the finite volume WENO schemes for r ¼ 4 at t ¼ 0:7 s. In both

versions we take cCFL ¼ 0:7 and the space step Dx ¼ 0:005. The oscillations that arise when the source term

is pointwise evaluated can be clearly observed in both figures. Since the magnitude of the oscillations is of

the same order as the initial perturbation, the pointwise scheme becomes unusable in such problems. It is

true that for a bigger initial perturbation the oscillations that appear when the pointwise scheme is used

cannot be seen on the global scale.

Now we want to compare the computational costs of the proposed schemes against some other well-
known numerical schemes of the first and the second order. Since the main advantage of the WENO

schemes are their high resolution properties, it is natural to compare the CPU times that are needed to

achieve the solutions that overlay well. The similar type CPU time analysis is done in [32]. The test is

performed on the problem with � ¼ 0:2. The numerical solutions at time t ¼ 0:7 s computed by using

different schemes with cCFL ¼ 0:9 are observed.

First, we compare the computational costs of the balanced finite volume WENO scheme and the bal-

anced first-order Roe scheme. The main advantage of the Roe scheme is that it is computationally fast. But,

since the scheme is quite diffusive, to achieve approximately the same resolution as with the WENO scheme,
the grid must be refined. Particularly, from Fig. 5, where the solutions computed with the finite volume

WENO scheme with r ¼ 3 on 400 cells, and with the first-order Roe scheme on 800 and 1600 cells are

presented, we can conclude that for achieving the same accuracy with the first-order Roe scheme, ap-

proximately four times finer mesh must be used. In Table 4, we present the CPU times that belong to the

solutions presented in Fig. 5. Although the computational cost per one grid cell of the WENO scheme is

much higher then for the first-order Roe scheme, it is still more efficient.

The comparison is also made between the balanced versions of the second order flux limited scheme with

the minmod limiter function, the finite volume WENO scheme with r ¼ 4, and the central WENO scheme



Fig. 4. Comparison of numerical results obtained with the finite volume WENO scheme, r ¼ 4 (test problem 5.1.2). Top: water level at

0.7 s; Bottom: discharge at 0.7 s.
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with r ¼ 3. It is well known that the considered second-order scheme is very simple, fast and less diffusive
then the first-order Roe scheme. Hence, to achieve the same accuracy as with the finite volume WENO

scheme with r ¼ 4 on 400 cells, just the two times finer grid (800 cells) must be used. The results are

presented in Fig. 5. There also the numerical solution obtained with the central WENO scheme with r ¼ 3,

400 cells, and by using cCFL ¼ 0:5 is shown. The presented solutions coincide quite well. The CPU times

needed for this computations are also presented in Table 4. From the obtained results it seems that for

practical use the second-order flux limited scheme is actually better then the presented higher-order finite

volume WENO scheme.

We can also compare the presented schemes with some other, more recently proposed schemes for the
shallow water equations. In particular in [5], the authors proposed a wide class of first and second-order

numerical schemes for the shallow water equations with source terms (among others the first-order Roe and



Fig. 5. Water level at t ¼ 0:7 s in the test problem 5.1.2. Top: Comparison between first-order Roe scheme with 800 and 1600 points,

and finite volume WENO scheme, r ¼ 3 with 400 points; Bottom: Comparison between second-order flux limited scheme with 800

points, finite volume WENO scheme, r ¼ 4 with 400 points, and central WENO scheme, r ¼ 3 with 400 points.

Table 4

CPU times for different numerical schemes (test problem 5.1.2)

Numerical method r Number of cells CPU time (s)

Finite volume WENO 3 400 4.45

First-order Roe 800 3.93

First-order Roe 1600 13.26

Finite volume WENO 4 400 5.86

Central WENO 3 400 3.66

Second-order flux limited 800 4.40
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the second-order flux-limited scheme were also included there). Some of the proposed flux-splitted schemes

were compared in [6] with the first-order Roe scheme. Since the authors of that paper conclude that their

computational costs are very similar and that the schemes provide very close solutions, except in the critical
points where the Roe scheme needs some entropy corrections, we consider the investigations we made here

are sufficient to demonstrate the computational efficiency of the schemes proposed in this paper.

5.1.3. Test problems for transcritical flows over bump

This is a classical test problem for the steady-state flow [2]. The bump in the riverbed is defined with

zðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 < x < 12;
0 otherwise

	
ð70Þ

in the computational domain 25 m long. Depending on the boundary conditions we set, the flow can be

subcritical all over the domain, it can become and stay supercritical, or become supercritical and then

return to the subcritical. We consider here just the last case in which the hydraulic jump occurs. To obtain a

hydraulic jump the discharge on the upstream boundary is set to 0.18 m2/s, while on the downstream

boundary constant water elevation hð25; tÞ ¼ 0:33 m is imposed. In the computations a space step
Dx ¼ 0:25 m and cCFL ¼ 0:75 are used. Although the improvements obtained by using the balanced

treatment of the source term versus the pointwise source term evaluation are not so emphasized, they are

still visible. But instead of the comparison between the balanced and the pointwise version of the scheme we

found more important to compare finite volume WENO scheme with the second order flux limited scheme,

and with the analytical solution. In Fig. 6, we can observe the good agreement of both schemes with an-

alytical water level solution. The improvement of the finite volume WENO schemes against flux limited

scheme can be nicely seen in the discharge, where the consistency error that arise in the critical point is

much smaller when the finite volume WENO scheme is used then in the case when the flux limited scheme
is. The comparison with the Roe scheme and also with some other first-order schemes is omitted here, since

the conclusions and the results would be very similar.

5.1.4. Dam-break over a rectangular bump

Now, we verify our schemes on the dam-break problem over the discontinuous riverbed. The test case is

taken from [29].

The riverbed is defined as

zðxÞ ¼ 8 if jx� 1500=2j < 1500=8;
0 otherwise;

	
ð71Þ

while the initial conditions are

Hðx; 0Þ ¼ 20 if x6 750;
15 otherwise

	
and vðx; 0Þ ¼ 0 ð72Þ

(see Fig. 7). In this test problem the friction forces are also taken into account and the Manning friction

factor is set to 0.1 over the whole numerical domain. The computations are performed with the space step

Dx ¼ 5 m and by using cCFL ¼ 0:5. In Fig. 8, we present results obtained with the pointwise and the bal-

anced version of the central WENO schemes, r ¼ 5 at t ¼ 15 s. The improvements obtained by using the
balanced version are clearly visible. If we observe the numerical errors that appear when the nonbalanced

central WENO scheme is used, we can notice that they are spread almost symmetrically around the two

positions of the jumps in the riverbed. Actually, the initial numerical errors appear just over the jump and

then this artificial disturbances propagates in both directions. As consequence the obtained numerical re-

sults are inaccurate.



Fig. 6. Comparison of the numerical schemes and analytical solution. Steady hydraulic jump over bump (test problem 5.1.3). Top:

water level; Bottom: discharge.
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5.1.5. Dam-break experiment

In this test problem we compare the numerical results obtained by using the balanced finite volume

WENO schemes with the experimental data. The measurements of this dam-break flow were performed in

the Universit�e libre de Bruxelles (ULB)/LRH-Châtelet by J.M. Hiver. The length of the channel is 38 m, the

gate of the dam are placed at 15.5 m from the left, while 10 m to the right from the gate a triangular obstacle

0.4 m height and 6 m length appears (Fig. 9). Lengths of the slope on each side of the obstacle are 3 m. We

consider here two test cases. In both cases the water is initially at rest and the water level in the reservoir is

0.75 m. In the first test case the channel on the right side of the gate is completely dry. On the outflow
boundary a free outflow condition is supposed. In the second test downstream of the gate the channel is

dry, except for a pool of steel water 0.15 m high that is bounded by the obstacle and a vertical wall on the

downstream boundary. The described initial conditions are presented in Fig. 9.



Fig. 7. The initial water level in the test problem 5.1.4.
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The computations are performed with the space step Dx ¼ 0:25 m and by using cCFL ¼ 0:9. The Manning

friction factor is set to 0.0125 over the whole numerical domain. Since in both considered cases the water

propagates over the dry bed an appropriate numerical treatment of wetting/drying front should be included

in computations. This is done according to [3].

In Figs. 10 and 11, we compare the numerical results obtained with the finite volume WENO scheme

with the experimental results and with the first-order Roe scheme. The water depth evolutions at different

measurement points are presented. Positions of the measurement points are given in Table 5. From the
presented figures we can conclude that some improvements are obtained when the higher-order schemes are

used. The global trend of the numerical solutions is similar in both numerical cases, but there are few

positions where the higher-order scheme becomes closer to the experimental data. The large deviations that

arise in some measurement points are probably the consequence of some real water flow effects that are not

completely modelled by the the shallow water equations, such as energy dissipation for example. We must

emphasize ones again that without balancing of the schemes that is developed in the paper, the finite

volume WENO schemes would be unusable for implementation in the presented problems.

5.1.6. Test problem with discontinuous riverbed

We consider now an academical test example with the discontinuous riverbed given by the step function

zðxÞ ¼ 1; x < 0;
0; x > 0:

	
ð73Þ

The initial conditions are defined with

hðx; 0Þ ¼ 1; x < 0;
0:6527036446614; x > 0

	
and hvðx; 0Þ ¼

ffiffiffiffiffi
2g

p
; ð74Þ

where g ¼ 9:81. In the case of the stationary flow with constant discharge, the given initial conditions
should remain unchanged. When we apply our schemes to this problem, we noticed that they produce some

consistency error in water depth on the right side of the discontinuity, which is independent of the cell sizes.



Fig. 8. The comparison of the central WENO schemes, r ¼ 5 (test problem 5.1.4). Top: water level at t ¼ 15 s; Bottom: discharge at

t ¼ 15 s.
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The same phenomenon is observed when the first-order scheme introduced in [2] is applied. The finite

volume WENO schemes in combination with the HLL Riemann solver (see [33]) produces the similar error
also, and the same is true for the finite difference WENO schemes. In Table 6, where we present the nu-

merically obtained values of the water depth on the right of the discontinuity, the consistency errors that

arise can be nicely observed. Since the considered numerical schemes approximate the shallow water

equations that are not valid in the region where the discontinuity in the riverbed is present, we cannot

expect from these schemes to give a correct results. Actually, we think the approximate Riemann solvers

that are used, fail in such cases. Since the considered WENO schemes are used in combination with the

standard approximate Riemann solvers, we cannot expect the consistency error to disappear. However,

there exists some ways to correct the schemes locally near the position of the discontinuity. Particularly,
following the ideas presented in [34], where the surface gradient method is extended to treat correctly the

flow over vertical step, some modifications of the approximate Riemann solvers at the positions of the

discontinuity of the riverbed should be done. Since a detail analysis of this theme could be very extensive, it

goes beyond the scope of this paper.



Fig. 9. The initial water level in the test problem 5.1.5. Top: the case with the completely dry channel; Bottom: the case with the

partially wet channel.
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5.2. Open-channel flow equations

5.2.1. Tidal wave propagation in a channel proposed by Working Group on Dam-Break Modelling

When we consider the open-channel flow equations the typical test problem to check the numerical

scheme is the test proposed by Working Group on Dam-Break Modelling [13]. The channel is rectangular

with variable bed and width as defined in [2] and presented in Fig. 12. Contractions and expansions of the

considered channel cause that additional forces appear, hence the additional balancing requirements arise,

as we have seen when the application of the numerical schemes to the open-channel flow was considered.



Fig. 10. Water depth at the measurement points G10, G11 and G13. Comparison of the numerical results and the experimental data in

the version of the test problem 5.105. with the dry bed.
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Fig. 11. Water depth at the measurement points G4, G13 and G20. Comparison of the numerical results and the experimental data in

the version of the test problem 5.1.5. with the wet bed.
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Table 5

Positions of the measurement points (test problem 5.1.5.)

Measurement point G4 G10 G11 G13 G20

Position xðmÞ 19.5 25.5 26.5 28.5 35.5

Table 6

Water depths on the right side of the discontinuity obtained with different numerical schemes (test problem 5.1.6.)

Numerical method h

First-order Roe 0.638086760619

Second-order flux limited 0.638086760619

Finite volume WENO with Roe solver 0.642073632474

Finite volume WENO with HLL solver 0.690837958716

Finite difference WENO Roe 0.642073632474

Finite difference WENO locally Lax-Friedrichs 0.638725676769
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Thus, it is interesting to check the behaviour of the balanced numerical scheme in that type of channel. We

suppose now that the tidal wave is incoming from the left channel boundary. It is defined with

hð0; tÞ ¼ 16:0� 4:0 sin p
4t

86; 400

��
þ 1

2

��
; ð75Þ

while the right boundary condition is

vð1500; tÞ ¼ 0: ð76Þ

Eq. (75) simulates a tidal wave of 4 m amplitude and the period of t ¼ 21; 600 s. The water is initially at

rest with the water level equal 12 m. The computations are performed with space step Dx ¼ 2:5 m and with

CFL coefficient cCFL ¼ 0:7.
We give numerical results after t ¼ 10; 800 s obtained by the central WENO scheme with r ¼ 3.

Results presented in Fig. 13, where the comparison between the balanced and the nonbalanced ver-

sions of the scheme is made, clearly illustrate the superiority of the balanced schemes. As we expect
Fig. 12. Test problem 5.2.1. Left: bed level; Right: width of the channel.



Fig. 13. The comparison of the central WENO scheme, r ¼ 3 (test problem 5.2.1). Top: water level at t ¼ 10; 800 s; Bottom: discharge

at t ¼ 10; 800 s.
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the results obtained with the finite volume WENO schemes shows the same trend, i.e., the results
obtained with the balanced scheme are very accurate, while when the pointwise scheme is used large

errors appear. However, according to V�azquez-Cend�on [28], we can evaluate the asymptotically exact

solution and verify the proposed numerical schemes by comparing the numerically obtained results

with it. Since the agreement with the exact solution is very well for all the balanced WENO schemes,

we omit to show this comparison.

5.2.2. Steady flow in a channel with variable height and width

This is an example for testing the efficiency of the presented numerical schemes when the steady-state
solutions in a channel with variable height and width are considered. The geometry for this test problem is

taken from [9]. The channel height and width are defined over the interval [0,3] with



zðxÞ ¼ 0:1 cos2 pðx� 1:5Þð Þ if jx� 1:5j < 0:5;
0 otherwise

	
ð77Þ

and

BðxÞ ¼ 1� 0:1 cos2 pðx� 1:5Þð Þ if jx� 1:5j < 0:5;
0 otherwise

	
ð78Þ

(see Fig. 14).

First we consider the steady state obtained by imposing the constant discharge of 0.1 m3/s at the up-

stream boundary and the water depth of 1 m on the downstream boundary. The imposed conditions cause

the purely subcritical flow over the whole domain, which could be evaluated analytically. Since for the given

case the balanced numerical schemes presented in the paper produce very accurate results that are almost
indistinguishable from the analytical solution, we decide to show just the comparison of the numerical

solutions obtained with the balanced and the nonbalanced version of the central WENO scheme with r ¼ 5.

However, in Fig. 15 we present also the analytical solution. While the results obtained with the balanced

numerical scheme are coincident with the analytical solution, the nonbalanced version produces the nu-

merical oscillations that are a consequence of transformations between the staggered and the nonstaggered

mesh which do not respect balancing of the flux gradient and the source term.

In the given channel we consider now the case defined with the discharge equal 1.88 m3/s on the upstream

boundary and the water depth of 1 m on the downstream boundary. Due to the variable bed and width of
the channel, and the imposed discharge the flow becomes supercritical at the point of maximum contraction

and maximum height, and then returns back to the subcritical. Therefore, at the critical point, a hydraulic

jump arises. In Fig. 16, we compare the finite volume WENO and the central WENO scheme with the

analytical solution. The position and the strength of the jump is predicted accurately with both the nu-

merical schemes. However, when the solution obtained with the finite volume WENO scheme is considered,

their high resolution properties are revealed. As for all the known numerical schemes, a consistency error in

the discharge occurs at the place of jump for both numerical schemes. However, when the finite volume

WENO scheme is used there is just one point in which such an error arises, while when the central WENO
scheme is used, the error is greater and spread over few points. We explain this phenomenon by the fact that



Fig. 15. The comparison of the central WENO scheme, r ¼ 5 (test problem 5.2.2). Top: water level; Bottom: discharge.
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averaging over the staggered and the nonstaggered mesh spread out the numerical disturbance over the

domain.

In the similar test example for the shallow water equations (test problem 5.1.3), we compare our WENO

schemes with the second-order flux limited scheme. Since the numerical solutions computed with all the

balanced schemes developed in the paper are in this test very close to the numerical solutions obtained with

the first-order Roe and the second order flux limited scheme, which are both in the steady-state case at least
second-order accurate, the presentation of the results and the further analysis is omitted here.

5.2.3. Water wave propagation through a natural watercourse

We consider the test problem on a natural watercourse of the southern part of the river Gacka (Croatia)

[26]. We take part of the channel about 2400 m long, with very varying cross-sections (see Fig. 17). The



Fig. 16. Comparison of the numerical schemes and analytical solution. Steady hydraulic jump in the test problem 5.2.2. Top: water

level; Bottom: discharge.
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friction forces are included in the computations. Depending on the properties of the channel the Manning’s

friction factor values vary between 0.03 and 0.05. Our goal is to compute a steady-state solution based on

the boundary conditions we set. On the inflow boundary the constant discharge of 20 m3/s is imposed, while

on the outflow we assume the normal flow arises. The discharge associated to it can be computed from the

relation Q ¼ S1=2
0 A2R2=3=M . Here, S0 denotes the bottom slope. All the values in the above relation must be

evaluated at the outflow boundary profile. The same test problem is considered in [30], where the flow is

evaluated by using the balanced second-order flux limited scheme.

The steady-state solution is computed with the finite volume WENO scheme with r ¼ 3. The mesh size is
taken Dx ¼ 10 m, while the CFL coefficient is set to 0.9. In order to show that the considered scheme solve

well the situations where the dry domain appear, we start with the initially dry channel. Like in the test



Fig. 17. Two cross-sections in the natural watercourse (test problem 5.2.3) (y-distance along the cross-section).
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problem 5.1.5, for the numerical treatment of the wetting front advance over a dry bed we use the technique

presented in [3]. The solution obtained after three hours of the water wave propagation we refer as the

steady-state solution. In Fig. 18, we present the water wave propagation until the steady-state water level is

reached. The shown results are obtained with the balanced scheme. The comparison between the pointwise

and the balanced version of the scheme at the steady state is then presented Fig. 19. The errors in the
discharge computed with the pointwise source term evaluation are unacceptable large. It is true that errors

also arise when the balanced scheme is used, but they are of much lower order then the errors obtained by

the pointwise scheme.

What we must emphasize is, that in combination with the pointwise evaluation of the friction term, the

CFL coefficient had to be reduced to 0.5, while here, with the semi-implicit discretization [4] it is set to 0.9.

With that, the statement that the semi-implicit discretization reinforces the CFL condition is confirmed.
Fig. 18. Water wave propagation in the test problem 5.2.3 obtained with the finite volume WENO scheme, r ¼ 3.



Fig. 19. The comparison of the finite volume WENO scheme, r ¼ 3. Discharge at the steady state in the test problem 5.2.3.
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6. Concluding remarks

After we extended the finite difference WENO schemes to the balance laws in [29], in this work we do the

same for the finite volume WENO schemes and the nonstaggered central WENO schemes also. With the

extension of the finite volume WENO schemes we obtain the balanced higher-order numerical schemes for

balance laws that can be applied to the nonuniform meshes also. There are two types of the balance laws

that we consider here: the shallow water equations and the open-channel flow equations. Both laws contain

a geometrical source term and the second law additionally includes spatially varied flux function. Thus,
when the Roe approximate Riemann solver is used in the finite volume WENO scheme the spatial part of

the flux is taken into account. Furthermore, the source term should be appropriately discretized. Such an

assumed general formulation, in combination with the appropriate definitions of the terms that depend on

the particular balance law, leads to the balanced finite volume WENO schemes. On the other hand, the

central WENO schemes modification for balance laws consists of three parts. First, we obtain the balancing

in the predictor and also in the corrector step of the scheme. In addition, we perform the procedure of

passing from the nonstaggered mesh to the staggered one and then after the time step is performed return

back to the nonstaggered, according to the idea of preserving the quiescent flow steady state. In the open-
channel flow case we obtained the balanced central WENO schemes only for the rectangular cross-section

channels, while no restriction is needed for the finite volume WENO schemes.

The numerical results in the last section confirm the necessity of using the balanced schemes, especially

for the cases where the channels with highly irregular geometry arise. Moreover, the accuracy test results

show that the order of accuracy of the new schemes is not deteriorated with the proposed reformulations,

when compared with the classical versions. Also the CPU times measured for both proposed types of the

schemes show satisfying results.
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